

PG – 618

Second Semester M.Sc. Degree Examination, July 2017 (RNS – Repeaters) (2011-12 and Onwards) MATHEMATICS

M - 201 : Algebra - II

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer any five full questions. Choosing atleast two from each Part.

2) All questions carry equal marks.

PART – A

- 1. a) Let K be an extension of a field F and $a \in K$ be algebraic over F and of degree n. Prove that [F(a) : F] = n.
 - b) Prove that every finite extension K of a field F is algebraic and may be obtained from F by the adjunction of finitely many algebraic elements.
 - c) Let $a = \sqrt{2}$, $b = \sqrt[4]{2}$ in R, where R is an extension of Q. Verify that a + b and ab are algebraic of degree atmost (deg a) (deg b). (6+6+4)
- 2. a) Prove that a polynomial of degree n over a field F can have atmost n roots in any extension field K.

Is the result true, when extension field K is not a field F? Justify with an example.

b) Define the splitting field of a polynomial over a field F.

Determine the splitting field of

i)
$$x^3 - 2$$

ii)
$$x^2 + x + 1$$
, over the field Q. (8+8)

- 3. a) Show that the polynomial $f(x) \in F[x]$ has multiple roots if and only if f(x) and f'(x) have a non-trivial common factors.
 - b) Prove that a regular pentagon is constructible by using edge and compass.
 - c) Show that any field of characteristic zero is perfect field. (6+5+5)

- 4. a) Define a fixed field. Let G be a subgroup of the group of all automorphisms of a field K. Then show that fixed field of G is a subfield of K.
 - b) State and prove the fundamental theorem of Galois theory. (4+12)

PART-B

- 5. a) Let V be a finite dimensional vector space over F. Prove that $T \in A(V)$ is invertible iff and only iff the constant term of the minimal polynomial for T is not zero.
 - b) Give an example to show that $ST \neq TS$ for $S, T \in A(V)$.
 - c) Define a rank of a linear transformation T. If V is a finite dimensional vector space over F and S, T ∈ A (V), then prove that r(ST) ≤ min {r (T), r(S)}. (6+4+6)
- 6. a) If T, S \in A(V) and if S is regular, then show that T and STS⁻¹ have the same minimal polynomial.
 - b) Define a characteristic root of $T \in A(V)$. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then for any $q(x) \in F[x]$, prove that $q(\lambda)$ is a characteristic root of q(T).
 - c) If V is n-dimensional vector space over a field F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $\{v_1, v_2, ..., v_n\}$ and the matrix $m_2(T)$ in the basis $\{w_1, w_2, ..., w_n\}$ of V over F, then prove that there is a matrix C in F_n such that $m_2(T) = C m_1(T) C^{-1}$ (5+5+6)
- 7. a) If V is n-dimensional vector space over F and if $T \in A(V)$ has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
 - b) Let $T \in A(V)$ and V_1 an n_1 -dimensional subspace of V and spanned by $\{v, vT, vT^2, ..., vT^{n-1}\}$, where $v \neq 0$. If $u \in V_1$ is such that $UT^{n_1-k} = 0$, $0 < k \le n_1$, then show that $u_0T^k = u$ for some $u_0 \in V_1$.
 - c) Prove that two nil potent linear transformations are similar iff and only iff they have the same invariants. (6+4+6)
- 8. a) Let V be a finite dimensional complex inner product space. If $T \in A(V)$ is such that $\langle T(v) : v \rangle = 0$ for each $v \in V$, then prove that T = 0.
 - b) If λ is a characteristic root of the normal transformation N and if $vN = \lambda v$, then show that $vN^* = \overline{\lambda}v$.
 - c) State and prove the Sylvester's law of inertia for real quadratic form. (4+4+8)
